New Attribute for determination of lithology and brittleness
نویسنده
چکیده
The discrimination of fluid content and lithology in a reservoir is an important characterization that has a bearing on reservoir development and its management. For the unconventional reservoirs, such as shale gas formations, besides other favorable considerations that are expected of them, it is vital that reservoir zones are brittle. Brittle zones frac better and fracing of shale gas reservoirs is required for their production. Amongst the different physical parameters that characterize the rocks, Young’s modulus (E) is a measure of their brittleness. Attempts are usually made to determine this physical constant from well log data, but such measurements are localized over a small area. For studying lateral variation of brittleness in an area, 3D seismic data needs to be used. Computation of Young’s modulus from seismic data requires the availability of density (ρ). The computation of density in turn requires long offset data, which is usually not available. In this study, we propose a new attribute (E ρ) in the form of a product of Young’s modulus and density. For a brittle rock, both Young’s modulus and density are expected to be high, and so the E ρ attribute would exhibit a high value and serve as a brittleness indicator. As well, we demonstrate the usefulness of this new attribute for litho-fluid detection, when it is used in conjunction with the product of bulk modulus and density.
منابع مشابه
A new brittleness index for estimation of rock fracture toughness
Assessment of the correlation between rock brittleness and rock fracture toughness has been the subject of extensive research works in the recent years. Unfortunately, the brittleness measurement methods have not yet been standardized, and rock fracture toughness cannot be estimated satisfactorily by the proposed indices. In the present study, statistical analyses are performed on some data col...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملInvestigating the Relationship between Various Brittleness Indexes with Specific Ampere Draw in Rock Sawing Process
This study aimed to develop new statistical models for evaluating the specific ampere draw (SI) based on rock brittleness index in rock sawing process. A variety of rocks, including carbonate and granite, were cut by a fully instrumented laboratory-sawing rig with two different types of circular diamond saws. Laboratory tests were performed at different depths of cut and feed rates. Multiple cu...
متن کاملA New Balancing and Ranking Method based on Hesitant Fuzzy Sets for Solving Decision-making Problems under Uncertainty
The purpose of this paper is to extend a new balancing and ranking method to handle uncertainty for a multiple attribute analysis under a hesitant fuzzy environment. The presented hesitant fuzzy balancing and ranking (HF-BR) method does not require attributes’ weights through the process of multiple attribute decision making (MADM) under hesitant conditions. For the rating of possible alternati...
متن کاملRock Brittleness Prediction Using Geomechanical Properties of Hamekasi Limestone: Regression and Artificial Neural Networks Analysis
The cold climate is a favorable parameter for the development of tension cracks and decrease of rock brittleness. Therefore, this paper attempts to investigate the Hamekasi porous limestone in order to predict the brittleness indices during freeze-thaw cycles. The freeze–thaw test was executed for one cycle including 16 h of freezing, and 8 h of thawing. The geo mechanical properties and brittl...
متن کامل